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Abstract.  The present  paper  investigates  the  automatic  detection  of  word-initial
glottalization  phenomena  (glottal  stops  and  creaky  voice)  in  German-accented
English  by  means  of  HMMs.  Glottalization  of  word-initial  vowels  can  be  very
frequent  in  German-accented  English,  as  well  as  in  German.  Detection  and
classification  of  glottalization  phenomena  is  useful  in  order  to  obtain  a
pre-segmentation of speech for basic phonetic research. Moreover, the inclusion of
acoustic models for glottalization, which are good indicators of word and morpheme
boundaries,  can  improve  the  overall  performance  of  an  Automatic  Speech
Recognition  (ASR)  system.  Since  creaky  voiced  vowels  have  different
spectro-temporal acoustic characteristics than modal voiced vowels, it is possible to
train  HMM  models  for  creaky  voice.  A corpus  of  BBC news  bulletins  read  by
German speakers was recorded and a subset of the corpus with manually labeled
glottalization  at  word-initial  vowels  was  used  to  initialize  HMM  models.  These
models were used to label the training and the test set in the corpus. To analyze
detection accuracy, the automatically derived labels were compared with the manual
labels. Results show that the proposed framework can be used for the identification
of glottalization phenomena, providing a reliable automatic pre-segmentation for the
purpose of phonetic basic research. 

1. Introduction
Glottalizations are produced by opening and then abruptly closing the vocal folds (glottal
stops) or by means of irregular and low frequency glottal fold vibrations (creaky voice). In
German and in English, glottalizations are not phonemes, i.e. they cannot differentiate word
meaning, however, they can be quite relevant in speech communication. Glottalizations can
carry out non-verbal information about speaker’s dialect, attitude, mood and emotional state
[1, 2]. Although they are produced involuntarily,  glottalizations can also carry out relevant
linguistic  information  by  marking  morpheme,  word,  phrase,  or  utterance  boundaries,
depending on the language. For instance, in German, glottalizations of word-initial vowels are
frequent at word and morpheme boundaries [3, 4]. In English glottalizations often occur at
intonation phrase boundaries as well as at pitch accented syllables [5], in Swedish [6] they are
phrase boundary markers, in Finnish and in English markers for turn taking [7, 8].

The automatic identification of glottalization phenomena is difficult because large annotated
speech  databases  and  suitable  automatic  detection  algorithms  are  seldom available.  As  a
result, several studies report qualitative analysis of glottalizations and less investigations are
concerned with their automatic detection [9]. However, the inclusion of acoustic models for
glottal  stops  and creaky voice  in  Automatic  Speech Recognition  (ASR) can  have  several
advantages.  Robust  automatic  detection  of  glottalized  segments  would  provide  a  useful
pre-segmentation for basic phonetic research. Since glottalizations can be good indicators of
word  boundaries,  for  instance  in  German  and  in  Czech  [10],  the  acoustic  modeling  of
glottalizations can improve ASR overall performance [11]. 



The  parametrization  of  creaky  voice  in  the  speech  signal  could  be  implemented  in  the
automatic recognition of tones since creaky voice can contribute to tone perception [12].  
In automatic pitch detection, glottalized segments introduce errors because of their irregular
characteristics  (see Section  2),  therefore  their  identification  and exclusion  would improve
pitch analysis. Moreover, the detection of creakiness could be also exploited for improving
speaker  recognition  systems.  Regarding  speech  synthesis,  glottalization  modeling  can
contribute to the naturalness of synthesized speech [9]. 

Various approaches have been proposed to identify creaky voice automatically, for instance,
based  on  autocorrelation  [13],  HMM  models  [14,  15],  pitch  marking  [16],  narrow band
Fourier spectrum analysis [17], and on Linear Prediction (LP) residual based features [18].  
In a previous investigation on German-accented English [19], an existing ASR system with
German HMM models  including the glottal  stop was used for the automatic  detection  of
glottal stops before word-initial vowels in order to create a pre-segmentation for the purpose
of basic phonetic research. The automatic labels were compared with the manual ones and it
was observed that glottal stops were reliably identified. The additional detection of creaky
voice is desirable since it has been found as the most frequent glottalization phenomenon at
word-initial vowels in German [3] and in German-accented English [10]. In order to detect
creaky voice, additional acoustic modeling is required. 

2. Acoustic characteristics of glottal stops and creaky voice
Glottal stops are plosives characterized by a complete closure of the vocal folds, indicated by
a phase of silence in the spectrogram (s. Figure 1a). The subsequent glottal fold opening can
be followed by some irregular vocal fold vibrations, also visible in the spectrogram. 

Creaky voice is a mode of vibration of the vocal folds in which they are closer together. This
mode  of  vibration  can  affect  whole  voiced  segments  or  part  of  them,  while  it  does  not
significantly  change  their  formant  characteristics.  Typical  for  creaky  voice  are  reduced
intensity, low F0 (e.g. below 50 Hz) and increased period to period irregularities with jitter
values over 10% [17]. However, since F0 detection algorithms often fail in glottalized regions
of speech, F0 measures are not always reliable indicators of creaky voice. Intensity could be
influenced by external factors other than glottalization, for instance by recording conditions,
such as microphone location and environmental noise, as well as by internal factors, such as
the speaker’s loudness level. 

Creaky voice is characterized by a specific spectral structure, which could be more reliable to
detect it than F0 or intensity alone [11]. For instance, an acoustic parameter for identifying
creaky voice is spectral tilt, defined as “the degree to which intensity drops off as frequency
increases” [20]. Spectral tilt can be measured by comparing the amplitude of F0 to that of
higher frequency harmonics and it is more steeply positive for creaky voice [20]. Accordingly,
in creaky phonation the amplitude of the second harmonic (H2) has been reported to be higher
than the amplitude of the first harmonic (H1) [21].

Due to the distinctive spectral characteristics of creaky voice, the processing and classification
algorithms  commonly  employed  for  speech  and  speaker  recognition  can  be  used  for  its
detection. With the choice of an appropriate feature extraction method, creaky voice can be
acoustically modeled using HMMs. Perceptual linear prediction (PLP) coefficients were used
in ASR by [8], and it was observed that such features can effectively encode voice quality
variations determined by their harmonic and temporal measures. 
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Figure 1. a) spectrogram showing (from left to right) a nonglottalized vowel (0), creaky voice (Cr),
and a glottal stop (G), b) averaged spectrum of the nonglottalized vowel (0), c) averaged spectrum of
the creaky segment (Cr), d) averaged spectrum of the glottal stop (G).

Lugger et al. [14] found ergodic HMM models with glottal gradients as voice quality features
more  suitable  for  classifying  breathy,  modal,  rough  and  creaky  voice  qualities.
Kane et al. [22] proposed a combination of commonly used spectral features with a specific
set of voice quality features, such as the difference between the first two harmonics (H1-H2),
for voice quality classification. In general, any feature extraction method capable of capturing
the  spectral  envelope  (the  harmonic  amplitudes)  as  well  as  its  temporal  variation can  be
successfully applied.

3. Experimental setup

3.1 Speech data

The speech data employed in the present study consists of BBC news bulletins read by 4 male
and 3 female German native speakers. The data was studio recorded with 44.1 KHz PCM and
then downsampled to 16 KHz and 16 bit resolution. The resulting speech database of 3 hours
and 13 minutes duration consists of 418 recorded sequences. The 102 sequences (about 38
minutes) in which glottalization of word-initial  vowels was manually labeled by an expert
phonetician (the first author) were divided into a training set (86 sequences, TRAIN1), used
for creating the initial acoustic models, and a test set (16 sequences, TEST1), used for their
validation. The  initial models were then employed for the automatic labeling of the whole
database. The 316 sequences of the database which were not manually labeled were used for
the  training  of  new  acoustic  models  (TRAIN2).  The  detection  accuracy  of  word-initial
glottalization  by  means  of  the  new  models  was  evaluated  on  the  102  manually  labeled
sequences (TEST2).



Figure 2. HMM modeling and automatic labeling procedure 

3.2 Lexicon 

The pronunciation lexicon was created by modifying the one used in [19, 23]. This included
only German phonemes obtained through English to German phoneme mapping. The lexicon
was enhanced by means of rules reproducing several German-accented English pronunciation
variations.  The rules were derived from linguistic  knowledge of German-accented English
(knowledge-based  approach),  as  well  as  from the  analysis  of  the  ASR confusion  matrix
(data-driven approach) [23].  Because of the limited amount of speech data available, it was
not  possible  to  reliably  train  separate  models  for  all  phonemes  of  the  German  language.
Therefore, differently than in the lexicon used in [19, 23], all vowels and consonants were
mapped to the single categories V (for vowel) and Co (for consonant), in order to preserve the
context  of  glottalization  phenomena.  Word-initial  vowels  were  coded  according  to  the
following optional  variants:  a)  V,  meaning a  nonglottalized  vowel,  b) G V,  a  glottal  stop
preceding the vowel,  c)  Cr V,  an initially  creaky and then modal  voiced  vowel,  d) Cr,  a
completely creaky vowel. 

3.3 Glottalization labeling procedure

Glottalization phenomena of word-initial vowels were manually annotated according to the
following categories: absence of glottalization, glottal stop, creaky voice, breathy voice, and
low F0. Since a glottal stop closure could be followed by a long creaky segment, the criterion
for labeling  glottal  stops  was that  the glottal  closure should be at  least  2/3 of the whole
glottalization (see [19, 10] for further details on the labeling procedure). The manual segments
for word-initial nonglottalized vowels, glottal stops and creaky voice were superimposed over
the automatically obtained phone segments as in [23], producing the reference labels. Breathy
voice and low F0 labels, which were less frequent in the corpus [10], were not considered.

The  reference  annotations  were  used  to  train  the  initial  HMM models,  which  were  then
employed for the automatic labeling of the non-annotated part of the speech database. The
labeling  was  carried  out  by  means  of  Viterbi  forced  alignment,  using  the  orthographic
transcriptions and the coding in the lexicon (Figure 2). The whole automatically annotated
database was used for training new and more accurate HMM models.

3.4 HMM recognizer 

The feature extraction was performed by means of a Blackman window applied over 25 ms
wide frames with a frame period of 10 ms. The band from 300 to 8000 Hz was covered with
31 Mel DFT filters and the log of the energy was computed at the output of each channel. 

The obtained feature vectors and their delta values were normalized to a mean of zero and a
standard  deviation  of  one.  Principal  Component  Analysis  (PCA),  as  an  orthonormal
transformation which provides a linear mapping for dimension reduction and decorrelation,
was used to bring the number of components to 24. 



Figure  3.  Positive  identification  of  the  manual  with  the  automatic  labels  for  word-initial  glottal
phenomena (averaged values), for the TRAIN1 and the TEST1 sets after the first training process and
for the TEST2 set after the second training process across different Gaussian densities. 

The detection system employed was implemented by means of the UASR (Unified Approach
for Speech Synthesis and Recognition) framework [24]. The system uses arc-emission HMMs
with a single Gaussian density per arc. The choice of the feature extraction method was based
on previous  recognition  experiments  with the  same framework.  In  these  experiments,  the
Mel-Log-Spectrum performed similarly as MFCC in speaker recognition [25] or better than
MFCC in phoneme recognition [24]. 

The structure is built  by an iterative training process by means of state splitting from the
initial HMM models. The two glottalization phenomena (Cr) and (G) along with vowel (V)
and consonant (Co) were modeled (see Section 3.2). The topology of the initial models is the
traditional left-to-right 3-state HMM with one Gaussian density per state. 

The number of final states (Gaussian densities) was achieved by state splitting, effectively
doubling the number of Gaussians for each iteration. Models produced after each state split
were included in the detection experiments and the best performing model on the TEST1 set
was  chosen  for  the  automatic  annotation  of  the  unlabeled  part  of  the  speech  database
(TRAIN2).

4. Results and Discussion
In order to estimate the quality of the obtained HMM models, the automatic were compared
with the manual labels. For each manual label of word-initial glottal stop or creaky voice, it
was checked for the presence of the corresponding automatic glottalization label in the same
word.  If  there  was a  match,  it  was  counted  as  a  positive  identification.  In  the  case  of  a
nonglottalized  word-initial  vowel  in  the  manual  labeling,  if  there  was  no  match  with  an
automatic  glottalization  label  in  the  same  word,  this  was  counted  also  as  positive
identification.

Figure 3 shows the averaged positive identification of glottal stops, creaky voice and absence
of glottalization at word-initial vowels. The presented results are obtained from the TRAIN1
and TEST1 sets (respectively 86 and 16 sequences), and from the TEST2 set (102 sequences)
after the second training process, using models with different numbers of Gaussian densities.
The HMM models with 12 Gaussian densities provided optimal detection performance on
both TRAIN1 and TEST1 set, hence, they were chosen to perform the automatic labeling on
the unlabeled part of the speech database. A second training process was initiated using the
now  automatically  labeled  TRAIN2  set  (316  sequences),  and  the  manually  annotated
TEST2 set.
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Table 1. Positive identification in % of the manual with the automatic labels for word-initial glottal
stops (G),  creaky voice (Cr)  and  absence  of  glottalization (0)  on the  TEST2 set  across  different
Gaussian densities.

Observed
labels

Gaussian densities

3 6 12 24 48

G 66.9 61.4 67.9 64.0 60.1

Cr 55.9 62.7 67.0 65.9 67.0

0 73.1 73.1 76.1 77.7 79.2

Table 1 shows the positive automatic identification of word-initial glottal stops (G), creaky
voice (Cr) and absence of glottalization (0) in the TEST2 set for each training iteration, in
comparison  with  the  manual  labels. For  each  word-initial  category  the  best  detection
performance  is  obtained  for  the  HMM  models  with  12  Gaussian  densities.  The  ASR
experiments with the 12-Gaussian-models produced the following recognition performance:
frame  label  correctness  (FSC)  of  83.30 ± 0.9%,  label  sequence  correctness  (LSC)  of
85.50 ± 1.4%,  label  sequence  accuracy  (LSA)  of  83.40 ± 1.2%  and  lattice  density  of
0.908 ± 0.018 on the reference annotations.

Table 2 presents the confusion matrix between the reference and the recognized frame labels
for creaky voice (Cr), glottal  stops (G), consonants (Co) and vowels (V) after the second
training process. Confusions are calculated by means of the Levenshtein distance algorithm,
which considers deletions,  substitutions  and insertions. Frames labeled as glottal  stop and
creaky voice are correctly identified in 70.8% and 72.5% of the cases respectively. The most
notable confusions concerning glottalization reference frames are those of creaky voice with
the vowel model (13.2%) and of glottal stops with creaky voice (11.1%), followed by glottal
stops with vowels (8.6%) and creaky voice with the consonant model (8.5%). 

The confusion of creaky voice with vowel frames can be expected since the manual labels for
creaky  voice  obviously  refer  to  glottalized  vowels.  Moreover,  creakiness  can  affect  also
vowels  which are not  in  word-initial  position,  especially  those at  the end of phrases  and
utterances [26], therefore some creaky non-initial vowels were included in the training of the
HMM vowel model. The confusion of glottal stop with creaky voice, and also of creaky voice
with glottal stop (5.8%), can be explained by the labeling criterion used to distinguish the two
phenomena, according to which creaky voice could include a glottal closure of less than one
third  of  the  whole  glottalization  (see  Section  3.3).  This  criterion  was  chosen  to  ensure
comparability of results with previous investigations on Czech-accented English (see [10]).
However, the fact that both creaky voice and glottal stops could include a silent part surely
makes the automatic identification of their frames more difficult. 

The confusion of glottal stop frames with the vowel model could be due to the first irregular
vowel periods after the glottal closure, which were included in the manual glottal stop label.
The confusion of glottal stop frames with consonants (5.6%) can be motivated by the fact that
glottal stops are plosive consonants and thus share some characteristics with other sounds in
the HMM consonant model. In general, the confusion with the vowel and consonant models is
understandable since the mapping of vowel and consonant sounds to the two categories could
not  generate  precise  models.  However  this  mapping  proved to be useful,  making a  good
recognition performance possible even with a limited amount of data.  The presented results
confirm  that  standard  HMM  modeling,  commonly  employed  in  speech  and  speaker
recognition, can be used for the classification of word-initial glottalization phenomena. The
proposed methodology could be also employed for detecting glottalization in other languages
besides German-accented English. 



Table 2. Frame labels confusion matrix in % (counts in brackets) after recognition evaluation on the
TEST2 set using the model with 12 Gaussian densities.

Observed

frames

Reference frames

silence Cr V Co G

silence 94.2 (76570) 0.0 (0) 0.8 (531) 2.7 (3074) 4.0 (111)

Cr 0.3 (284) 72.5 (3301) 5.2 (3635) 1.9 (2197) 11.1 (306)

V 0.7 (579) 13.2 (602) 79.9 (55705) 19.0 (21465) 8.6 (236)

Co 2.4 (1965) 8.5 (385) 13.3 (9259) 73.8 (83593) 5.6 (154)

G 2.4 (1921) 5.8 (262) 0.9 (601) 2.5 (2868) 70.8 (1953)

5. Conclusions
The present  paper  investigates  the  automatic  detection  of  word-initial  glottalization
phenomena, glottal stops and creaky voice, in German-accented English by means of HMMs.
By  using  a  limited  amount  of  data  (about  38  minutes  of  speech)  in  which  word-initial
glottalizations  had been  manually  labeled,  it  was  possible  to  initialize  HMM models  for
glottal  stops  and  creaky  voice.  These  models  could  be  used  to  label  the  rest  of  the
German-accented English database. 

To analyze detection accuracy, the labels derived by forced alignment were compared to the
reference labels, in which word-initial glottalization categories had been labeled by an expert
phonetician. HMM models performed well in the detection of creaky voice and glottal stops,
which  were  correctly  identified  in  the  majority  of  cases  (respectively  72.5% and  70.8%
identification with reference frame labels). Most frame confusions could be due to the vowel-
and consonant-character of creaky voice and glottal stops, to the manual labeling criteria or to
the  presence  of  one  single  HMM  model  for  consonants  (Co)  and  one  for  vowels  (V).
However, Co and V proved to be useful to model the context of word-initial vowels given the
small size of the corpus. 

The results of the detection experiments show that the proposed method can be successfully
employed  for  the  identification  of  glottalization  phenomena,  thus  creating  a  reliable
pre-segmentation useful for phonetic basic research. The acoustic  models for glottalization
phenomena  could  be  further  improved  by  means  of  re-training  or  adaptation  on  larger
automatically labeled speech data, thus improving detection accuracy. 
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