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Abstract: This paper addresses the issue of data 
compression in distributed speech recognition on the 
basis of a variable frame rate and length analysis 
method. The method first conducts frame selection by 
using a posteriori signal-to-noise ratio weighted energy 
distance to find the right time resolution at the signal 
level, and then increases the length of the selected frame 
according to the number of non-selected preceding 
frames to find the right time-frequency resolution at the 
frame level. It produces high frame rate and small frame 
length in rapidly changing regions and low frame rate 
and large frame length for steady regions. The method is 
applied to scalable source coding in distributed speech 
recognition where the target bitrate is met by adjusting 
the frame rate. Speech recognition results show that the 
proposed approach outperforms other compression 
methods in terms of recognition accuracy for noisy 
speech while achieving higher compression rates. 
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1 Introduction 

Speech signals are considered non-stationary and exhibit 
quasi-stationary behavior in short periods. Therefore, 
speech analysis is generally done by short-time fixed 
frame rate (FFR) and fixed frame length (FFL) analysis. 
On the other hand, the signals have varying time-
frequency characteristics and some parts of the speech 
sequence (e.g., vowels) are stationary over longer 
periods compared to others (e.g., consonants and 
transient speech). To respond to these observations, 
variable frame rate (VFR) and length (VFL) analysis 
methods have been proposed for automatic speech 
recognition (ASR) and speaker recognition [1]-[8]. 

VFR analysis selects frames according to the signal 
characteristics by first extracting speech feature vectors 
(frames) at a fixed frame rate, and then determining 
which frames to retain. The decision on frame selection 
relies on some distance measures and thresholds [2]-[5]. 
In [3], an effective VFR method was proposed that uses 
a 25ms frame length and a 2.5ms frame shift for 
calculating Mel-frequency cepstral coefficients (MFCCs) 
and conducts frame selection based on an energy 
weighted cepstral distance. The method improves the 

noise-robustness of ASR. In [4], an entropy measure 
instead of a cepstral distance is used, resulting in further 
improvement in recognition performance at the cost of 
higher complexity. An effective energy based frame 
selection method was proposed in [5] where it uses delta 
logarithmic energy as the criterion for determining the 
size of the frame shift on the basis of a 
sample-by-sample search. A low-complexity VFR 
method based on the measurement of a posteriori 
signal-to-noise ratio (SNR) weighted energy was 
proposed in [2].  

VFR and VFL analysis has been used for speaker 
verification in [6] and speech recognition in [7]. As 
noted in [6], VFL analysis is more effective than FFL to 
accommodate the varying time-frequency acoustic 
phonetic characteristics. For a speech recognition task in 
laboratory conditions, paper [7] presents a variable frame 
rate and length algorithm in which frame rate is doubled 
and frame length is halved in transition regions.  

The a posteriori SNR weighted energy distance based 
VFR method proposed in [2] has shown to be able to 
assign more frames to fast changing events and less 
frames to steady regions even for very low SNR signals. 
This method provides a natural way for dynamically 
changing frame length: extend the frame length when 
there are less frames selected. As a result, the frame 
length is kept as normal in the fast changing regions 
whereas it is increased in the steady regions. This leads 
to a joint VFR and VFL analysis (VFRL) for noise 
robust speech recognition in [8], which is able to further 
improve ASR performance in noisy environments.  

The method in [8] was originally developed to provide 
good speech recognition performance in adverse 
conditions. Due to the nature of VFR and VFL analysis, 
it is considered as suitable also for data compression in 
distributed speech recognition (DSR). In [2] and [9], 
VFR analysis is applied for DSR to reduce the 
transmission bitrate of feature streams by not sending 
redundant frames that can be reconstructed at the remote 
server from the received frames. In this paper we present 
the application of the joint VFR and VFL analysis for 
DSR and investigates the effects of different 
compression levels and noise conditions.  

The remainder of this paper is organized as follows: 
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Section II presents the variable frame rate and length 
algorithm. Section III presents the application of the 
VFRL method in distributed speech recognition. The 
experimental results and discussions are given in Section 
IV. Section V concludes this work. 

2 Variable frame rate and length algorithm 

This section presents an a posteriori SNR weighted 
energy distance based VFRL method and shows the 
results of frame selection and length determination.  

2.1 The VFRL analysis algorithm 

The variable frame rate and length analysis based on 
a posteriori SNR weighted energy distance [8] is realized 
through the iterative algorithm (Figure 1). 
 

 

 
 

Figure 1 Diagram of the VFRL analysis method 

Step1. The number of frames are determined and the 
value for frame selection threshold T(t) is calculated 
from the equation: 

  ( ) ( ) ( )( )tEftD=tT noiselog⋅    (1)  

where
___
)(tD is the weighted energy distance D(t) 

averaged over a certain period. It can be calculated over 
one utterance for simplicity, but in practice, usually 
___
)(tD  is estimated over the preceding segment. The a 

posteriori SNR weighted energy distance D(t) of two 
consecutive frames is calculated as: 

  ( ) ( ) ( )| | ( )tSNRtlogEtlogE=tD post⋅−− 1   (2) 

where E(t) is the energy of frame t, and SNRpost(t) is the a 
posteriori SNR value of the frame that is defined as the 
logarithmic ratio of the energy of noisy speech E(t) to 
the energy of noise Enoise(t). The function f(logEnoise(t)) is 
a sigmoid function of logEnoise(t) to allow a smaller 
threshold and thus a higher frame rate for clean speech. 
The sigmoid function is defined with the following 
equation, where α = 9.0, β = 2.5 and γ = 13. The constant 

γ = 13 is chosen so that the turning point of the sigmoid 
function is at an a posteriori SNR value of between 15dB 
and 20dB: 

( )( ) ( ) γte+

β+α=tlogEf
noiselogEnoise −⋅21

  (3) 

Since the algorithm is used in offline mode, the value for 
T is estimated over all available frames and it is not 
changed over time. However, in live mode the value of 
T(t) can be estimated over preceding segments and 
updated on a frame-by-frame basis. Afterwards, the first 
frame is loaded in the input buffer and a 
separate ”Superframe” linear buffer is established with 
the same frame content. The initial size of the buffer is 
set on 25ms (200 samples for the 8kHz sampled speech). 

Step 2. The frame is moved with the defined time shift 
(1ms) and the content of the following frame is loaded 
into the input buffer. In the same time the ”Superframe” 
buffer is extended with the number of samples of the 
frame shift.  

Step 3. The accumulative distance is updated per frame 
basis: A(t) += D(t) and it is compared against the 
threshold T(t). If A(t) < T(t) the process continues again 
from Step 2. The ”Superframe” buffer length is 
determined by the frequency of the frame selection 
events and the initial frame size is expanded gradually 
by the number of samples from the last frame selection 
point. If there are no significant changes in the frame 
energy, the function D(t) will grow slowly and 
the ”Superframe” length will reach the size of the 
pre-defined FFT analysis window (unless specified 
otherwise, it is 32ms or 256 samples).  

When the ”Superframe” length equal the FFT window, 
the input buffer is changed from linear into circular and 
its length is kept fixed until the moment of frame 
selection. That means, the selected frame will have a 
length between the initial defined size (25ms) and the 
length of the FFT analysis window (32ms).  

Step 4. When the condition A(t) ≥ T(t) is met, the current 
frame is selected and the feature extraction process is 
carried on the ”Superframe” buffer and the resulting 
frame based feature vector is extracted and stored.  

A(t) is reset back on zero and the ”Superframe” buffer is 
re-initialized again on the initial length and the 
consecutive frame content and the execution continues 
again from Step 2. The process is iteratively repeated 
until the end of the input speech utterance. 

2.2 Frame selection and length determination 
results 

Figure 2 shows the results of the VFRL method for (a) 
clean speech, and (b) 5dB noisy speech, where the first 
panel of each sub-figure shows the waveform and 
selected frames and the second panel shows the length of 
selected frames with dashed line illustrating the initial 
length of 25ms. From the figure it can be seen that more 
frames were selected in regions with higher SNR values 
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and rapidly changing characteristics for both clean and 
noisy speech. The length of these high-dense frames is 
close to the initial frame length.  

For the low SNR or steady regions, fewer frames are 
selected and the length of these frames is larger and 
limited by the maximal defined value. These 
characteristics are desirable for VFRL analysis in DSR.  

 
Figure 2 Frame selection and length determination results: (a) 
For clean speech: spectrogram (the first panel) and the selected 
frames and their length (the second panel, with the dashed line 
showing the initial length of 25ms), D(t) in Equation (1) (the 
third panel) and A(t) in Equation (4) (the fourth panel, with the 
dashed line showing T in Equation (2)); (b) for 5dB noisy 
speech with the same order of panels as in (a), respectively. 

3 Scalable speech compression in distributed 
speech recognition 

To benefit from the resources available over networks, 
DSR employs the client-server architecture and submits 
the computation-intensive ASR decoding task to a 
powerful server [10]. Specifically, speech recognition 
features are compressed and transmitted through 
networks to a server, where they are decoded and used in 
the recognition phase. The ETSI-DSR standard [11] uses 
split vector quantization to compress MFCC features. An 
efficient compression method applied in DSR is the two-
dimensional discrete cosine transform (2D-DCT) based 
code [12]. In [13] the group of pictures concept (GoP) 

from video coding was applied to DSR to achieve a 
variable bitrate inter-frame compression scheme.  

As shown in Figure 2, the VFRL implementation in DSR 
provides a high time resolution for fast changing events 
and a low time resolution for steady regions. Moreover, 
the extended frame lengths give large overlaps between 
consecutive frames. As a result, there is a big potential 
for scalable data compression by simply reducing the 
frame rate. It is important to note that, as shown in [14], 
there is a strong correlation between the number of states 
of the back-end hidden Markov models (HMMs) and the 
frame rate used in the front-end and a mismatch between 
the two significantly degrades the speech recognition 
performance. After reducing the frame rate at the client 
side, it is necessary to restore the proper frame rate at the 
server side by e.g. repetition or interpolation. 

4 Speech recognition experiments 

To evaluate the VFRL analysis based scheme for DSR, 
speech recognition experiments were conducted on Test 
Set A of the Aurora 2 database across different methods 
and compression levels. 

4.1 Database 

Experiments in this work were conducted on the Aurora 
2 database [15], which is the TI digits database 
artificially distorted by adding noise and using a 
simulated channel distortion. The sampling rate is 8kHz. 
Whole word models were created for all digits using the 
HTK recognizer [16] and trained on clean speech data. 
For testing, Test Set A was used. The four noise types in 
Test Set A are ”subway”, ”babble”, ”car”, 
and ”exhibition” and the testing conditions include 
Clean, 20dB, 15dB, 10dB, 5dB and 0dB. MFCCs are 
used as the speech features with 12 coefficients (without 
c0) and logarithmic energy and their delta and delta-delta 
features, resulting in 39 dimensions. The FFR and FFL 
baseline method is the ETSI Distributed Speech 
Recognition (DSR) [11] with a frame length of 25ms and 
a frame rate of 100Hz. 

4.2 Recognition results 

In this work, we implemented two compression schemes 
after applying split vector quantization and the resulting 
data streams have bitrates of around 1.8kbps and 
1.2kbps, respectively. The original frame rate is restored 
by frame repetition before HMM decoding in the server. 
Both the speech for training acoustic models and the 
speech for testing were quantized. 

Table I. Percent WER across the methods, averaged over 
0-20dB and four noise conditions. 

Methods  Bitrate 
(kbps)  

Noisy 
speech 

 Clean  
speech 

FFR baseline (ETSI-DSR)   4.4  39.8   1.0  
2D-DCT   1.4  40.5   1.6  
GOP   2.6  N/A   2.5  
GOP  1.3  N/A   2.6  
SNR-LogE-VFR  ~1.5  32.8   1.2  
SNR-LogE-VFRL   ~1.8  27.1   2.1  
SNR-LogE-VFRL  ~1.2  29.3   2.5  
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The recognition results are shown in Table I, where the 
results for 2D-DCT and GoP are cited from [12] and 
[13], respectively. Since there could be a mismatch in 
the train/test sets between the various simulation systems 
in the references, the comparisons are indicative only.  

The table shows that the proposed SNR-LogE-VFRL 
approach gives 12.7% absolute improvement in 
recognition accuracy over the FFR baseline at a bitrate 
of 40.9% (1.8 kbps vs. 4.4 kbps and 10.5% absolute 
recognition improvement at a bitrate of 27.3% (1.2kbps 
vs. 4.4 kbps). Further, the proposed method achieves 
high compression rates at reduced computational cost 
since there are fewer frames (MFCC features) to be 
calculated due to the low bitrate/frame rate.  

Table II compares the proposed approach with SNR-
LogE-VFR for 1.5kbps, 1.8kbps and 1.2kbps for various 
noise types and SNR levels. It is noticed that the 
improvement for SNR-LogE-VFRL 1.8kbps and 1.2kbps 
is achieved for all noise types. SNR-LogE-VFRL 
1.8kbps significantly outperforms the one with 1.5kbps 
also for all noise levels, while SNR-LogE-VFRL 
1.2kbps outperforms the one with 1.5kbps for all noise 
levels except for 20dB.  

Table II. Percent WER across the methods and bitrates, 
averaged over 0-20dB and four noise conditions. 

  SNR-LogE-VFR  SNR-LogE-VFRL  SNR-LogE-VFRL  
   ~1.5 kbps   ~1.8 kbps   ~1.2 kbps  
Average   32.8   27.1   29.3  
Subway   34.3   26.7   31.0  
Babble   30.9   26.9   29.8  
Car   33.0   26.0   27.9  
Exhibition   33.0   26.9   28.6  
20dB   6.4   6.1   7.4  
15dB   13.4   10.0   11.6  
10dB   25.4   18.0   20.4  
5dB   45.7   35.5   38.4  
0dB   73.1   66.0   68.9  
 

Further experiments were conducted to investigate the 
behavior of VFR and VFRL with different 
compression rates through the analysis of recognition 
error types. Table III shows the number of correctly 
recognized words, the number of recognition errors in 
different types and the percent WER for speech 
corrupted by "exhibition" noise at 10dB. It should be 
noted that the improvement comes from all types of 
recognition errors and from the correctly recognized 
words.  

Table III. Number of correctly recognized words, 
substitutions, deletions, insertions, and percent WER 

(“Exibition” noise at 10dB, in total 3241 words). 

  Corr.  Del.  Sub.  Ins.  WER (%) 
SNR-LogE-VFR 1.5k   2473   170 598  53  25.3  
SNR-LogE-VFRL 1.8k   2712   126 403  37 17.5 
SNR-LogE-VFRL 1.2k   2631   155 455  42  20.1  
 

To provide more insight about the noise robustness 
brought by the SNR-LogE-VFR, Table IV provides the 
recognition results across different frame analysis 
methods without data compression (i.e. standard ASR 
where no data compression is applied).  

The ETSI-DSR is used as the standard method to 
represent the FFR baseline with a FFL of 25ms. Cep-
VFR refers to the energy weighted cepstral distance 
based VFR [3]. Cep-VFR+VAD is the combination of 
the Cep-VFR method with voice activity detection and 
the results for this method are cited from [4]. LogE-VFR 
is the energy-based VFR presented in [5] and the results 
are cited from this reference as well. The SNR-LogE-
VFR is the a posteriori SNR weighted energy distance 
based VFR [2].  

Table IV. Percent WER across the methods, averaged 
over 0-20dB and four noise conditions. 

 Noisy speech  Clean speech 
FFR baseline (ETSI-
DSR)  

38.7  1.0  

Cep-VFR  29.5  3.5  
Cep-VFR+VAD  30.0  1.4  
LogE-VFR  31.4  1.1  
SNR-LogE-VFR  28.7  1.4 
SNR-LogE-VFRL  25.8  1.7  
 
It is noticed that all VFR methods outperform the 
baseline FFR in noisy conditions. SNR-LogE-VFR has 
both a lower complexity and a better recognition 
performance as compared with the other VFR methods. 
SNR-LogE-VFRL further introduces 2.9% absolute 
improvement over SNR-LogE-VFR for noisy speech. As 
compared with the FFR-FFL baseline, the improvement 
is very significant from 38.7% to 25.8% in WER. The 
performance on clean speech decreases moderately.  

5 Conclusions 

In this paper we presented a data compression approach 
for distributed speech recognition. The approach is based 
on a computationally efficient variable frame length and 
rate (VFLR) method that uses a posteriori SNR weighted 
energy distance for frame selection. It was demonstrated 
that using variable frame rate (VFR) analysis for DSR 
provides higher data compression rates and more 
efficient data transmission to the server side. In the same 
time, introducing variable frame length (VFL) analysis 
and selecting relatively longer frames has positive 
impact on the noise-robustness of DSR. Speech 
recognition experiments confirmed that the proposed 
variable frame rate and length method improves the 
performance for low bitrate source coding compared to 
the other methods commonly used in DSR. The 
combination of the variable frame rate and length 
introduces twofold benefit: lower bitrate source coding 
and improved noise robustness, effectively improving 
the overall performance of distributed speech recognition 
systems, in the terms of computational and transmission 
efficiency as well as noise robustness. 
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