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Abstract

This  present  paper  aims at  answering the question whether  
there  are  distinctive  cross-linguistic  differences  associated 
with hyperarticulated speech in correction dialogue acts. The 
objective  is  to  assess  the  effort  for  adaptation  of  a 
multilingual  dialogue  system  in  9  different  languages, 
regarding the recovery strategies,  particularly corrections.  If 
the presence of hyperarticulation significantly differs  across 
languages,  it  will  have a significant  impact on the dialogue 
design and recovery strategies.

Index  Terms: hyperarticulation,  multilingual  speech 
dialogue systems, human-computer interaction

1. Introduction

The development of a multilingual Spoken Dialogue System 
(SDS)  requires  significant  effort,  resources,  time  and 
expertise.  It would be more feasible  if most of the features 
could  be  shared  across  languages  without  extensive 
adaptation and providing equal level of performance [1]. 

The question is,  at which extent a multilingual dialogue 
system actually needs to be adapted to a specific language or 
culture,  while  retaining  most  of  its  original  design. 
Conducting “Wizard of Oz” (WOz) experiments  with native 
speakers  would  provide  clues  about  how language  specific 
adaptation of the dialogue system should be performed. The 
speakers'  experience  is  simulated  to  prove  the  design 
concepts, to collect relevant data and to analyze the behavior 
and expectations of the participants.

Automatic speech recognition is  still  a challenging task 
and  recognition  errors  are  ultimately  unavoidable,  causing 
communication  problems in  spoken  human-computer 
interaction.  Thus,  it  is  of  great  importance  to  facilitate  
detection and correction of miscommunication.  For humans, 
recognizing  and  clarifying  such  situations  utilizing  lexical  
and  syntactic  cues  is  part  of  everyday  communication. 
However, a robust  dialogue system has to be able  to detect 
miscommunication  and  to  apply  appropriate  recovery  and 
error strategies.

Many  research  studies  are  dealing  with  the  topic  of 
prediction,  detection and reduction of miscommunication in 
SDS. In [2], the data-driven approach for detecting instances  
of  miscommunication  is  described.  The  authors  in  [3] 
proposed  a  system  which  integrates  an  error  correction 
detection  module  with  a  modified  dialogue  strategy.  In the 
study  [4],  a  machine-learning  approach  employed 
automatically  derived  prosodic features,  the  speech 
recognition process, experimental conditions and the dialogue 
history  to  identify  user  corrections  of  speech  recognition 
errors.  An  error  handling  strategy  based  on  dynamically 
created  correction  grammars  for  recognizing  correction 
sentences is described in [5].

Using  prosodic  features  for  recognizing  and  classifying 
dialogue  acts  in  general  was  investigated  in  [6].  In [7] the 
duration, pause, and pitch features were employed to train a 
decision tree  classifier,  which was  extended  and integrated 
with  recognizer  confidence scores  for further  improvements 
in  detection  of corrections  [8].  The  speaking  style  changes 
associated  with  correction  dialogue  acts.  Hyperarticulation 
can be used as a clue in order to identify problematic turns.

The  authors  in  [9] observed  that  human  speech  during 
error resolutions shifts to become lengthier and more clearly 
articulated.  A similar  study  presented  in  [10]  shows  that 
English  speaker  utterances  of correction and  non-correction 
dialogue  acts  differ  prosodically  in  ways  consistent  with  
hyperarticulated  speech.  They  defined  it  as:  “slower  and 
louder speech with wider pitch excursion and more internal 
silence”.  This  change  in  speaking  style  is  most  likely  to 
provoke  recovery  “error  spirals”,  consequently  ending  the 
machine dialogue unsuccessfully. Some studies  have shown 
this  phenomenon is associated with higher recognition error 
rate  [11-12]  and  that  speakers  hyperarticulate  more  often 
after  several  errors  [13].  In  [14]  longer  average  phone 
duration,  significant  changes  in  pitch  and  fundamental 
frequency were observed in hyperarticulated German speech 
data.  However other studies reported  minor changes [15] or 
no negative impact [13] on error rate. 

In  this  paper,  we  are  investigating  cross-linguistic 
differences  related  to  hyperarticulated  speech  in  correction 
dialogue  acts.  The  objective  is  to  assess  the  effort  for 
adaptation of a multilingual dialogue system from the aspect 
of  recovery strategies.  If  the  presence  of  hyperarticulation 
significantly  differs  across  languages,  it  will  consequently 
have significant influence on the dialogue design as well  as 
the  recovery strategies.  Although  there  are  many research 
studies  dealing  with  cross-linguistic  prosodic  differences 
[16-19], they are mostly done on a pair of languages and on a 
limited number of participants. By our best knowledge, there 
are  no  research  studies  dealing  with  simultaneous 
investigation of the characteristic features of hyperarticulated 
speech on several languages in parallel.

2. Speech Database

In  order  to  collect  a  multilingual  database  containing 
audio-visual  data,  as  well  as  to  find  the  answer  to  how 
speakers  of  different  native  languages  interact  with  an 
intelligent  smart-home system,  we  prepared  and  performed 
WOz  experiments.  In  a  preparatory  phase,  an  online 
questionnaire with a total of 870 participants was carried out 
in 16 languages [20]. The results provided suggestions for the 
dialogue  design  and  revealed  general  user  expectations.  In 
the  implementation  phase,  19  different  user  scenarios  for 
usage and control of smart home devices were designed and 
the corresponding dialogs were created. 



The  scenarios  were  carefully  designed  to  elicit 
spontaneous reactions and to trigger recovery behavior from 
the participants in case of miscommunication. 

The WOz experiments were carried out for the following 
languages  (abbreviation  and  number  of  participants  in 
brackets):  English  (EN:40),  German  (DE:40),  French 
(FR:23),  Spanish  (ES:27),  Italian  (IT:19),  Dutch  (NL:15), 
Finnish  (FI:7),  Norwegian  (NO:7),  Swedish  (SE:6),  Danish 
(DA:8),  Russian  (RU:20),  Turkish  (TR:20)  and  Mandarin 
Chinese (CN:19). The dialogs were translated and adapted for 
all  languages,  while  keeping  the  same  meaning  and  the 
semantic structure whenever possible. 

During the session, the wizard triggered speech dialogue 
acts  and  device  functions  to  simulate  a  perfect  dialogue 
system. Before the session start,  the participants were asked  
to sign a consent waiver and they received reimbursement for 
their participation. Afterward, the moderator would introduce 
the  system,  give  examples  about  the  usage  of the  greeting 
keywords and demonstrate a simple scenario.

Miscommunication  was  simulated  by  introducing 
embedded error speech prompts, categorized as: 

• Substitutions: wrongly recognized parameters;

• Insertions: confirmation of non-uttered sentence;

• Deletions: request to repeat the last sentence.

The participants were asked to use a special  keyword in 
case of misunderstanding to perform correction, for example,  
English  “Correction”,  German  “Korrektur” and so on. The 
explanation for the participants was that the system is more 
robust  in  presence  of  noise  when  using  such  special  
keywords.  The maximum number  of error  prompts  (around 
20%)  in  a  session  was  estimated  over  the  number  of  the  
required parameters (options, entries) per scenario, including 
occasional system rejections and repetitions.

The error prompts  were not triggered automatically, but 
manually by the wizard.  However, not all  the planned error 
prompts  were  played  since  the  actual  dialogue  flow never 
reached  intended  states  where  the  errors  should  be 
introduced. By our best  knowledge, none of the participants 
realized that he or she was interacting with a human operator  
and not with  a machine.  The experiments  were staged in a 
time span of several  months.  Approximately 4500 scenarios 
for  all  languages  were  fulfilled  yielding  audio-visual 
recordings  with  a  duration  of 125  hours.  The  speech  was 
segmented  and  orthographically  transcribed  by  native 
speakers  (the  associates  engaged  in  the  WOz),  producing 
detailed  descriptions  of  dialogue  flows  for  each  scenario.  
Having such parallel  multilingual  corpus is a solid  basis  to 
perform investigations  on the  behavioral  patterns  of native 
speakers, from the linguistic as well as paralinguistic aspects.

3. Data and Tools

3.1. Data organization

Common data-sets were compiled for all languages, based on 
collected  corpus  and  the  timestamped  logs of the  dialogue 
acts.  Nine  languages  were  selected  for  further  analysis 
according to the number of participants (at least 15): German,  
English, Spanish, French, Italian, Turkish, Russian, Mandarin 
Chinese and Dutch. Since the main objective is the analysis  
of features  corresponding  to  hyperarticulation,  we  selected 
pair  of utterances  of “statement”  and  “correction”  dialogue 
turns (in total 3026). 

3.2. Prosodic features

For the prosodic features  analysis  of the  selected  utterance 
pairs, the following Praat [21] scripts were used.

“Praat  Script  Syllable  Nuclei  v2” [22]  was  used  for 
automatic detection of syllable nuclei in order to estimate the 
speech rate without the need of manual transcription. Peaks 
in intensity (dB) that  are  preceded and followed by dips  in 
intensity are considered as potential syllable nuclei, while the 
peaks  that  are  not  voiced  were  discarded.  The  following 
measures  were  considered:  speech  rate  (nsyll/speech-
duration), articulation rate (nsyll/phonation-time) and average 
syllable  duration  (phonation-time/nsyll).  Where  nsyll is  the 
number  of  syllables  detected  in  either  speech  duration  or 
phonation time. 

“ProsodyPro  6beta”  [23]  was  used for  systematic 
analysis of the data-sets to generate detailed discrete prosodic 
measurements  suitable  for  statistical  analysis:  maximal  f0 
(Hz), minimal f0 (Hz), pitch excursion (semitones), averaged 
f0 (Hz),  averaged  intensity (dB)  and  maximum  f0 velocity 
(semitone/s).

In  order  to  simulate  real  conditions  in  a  smart-home 
environment  during  experiments,  there  was  a  frequent  and 
significant  presence  of stationary and  non-stationary noise. 
The transcribers were instructed in such cases to label longer 
leading and trailing silences as a requirement for later speech  
recognition evaluations. However, such noisy segments would 
clearly disturb the prosody analysis and render it unreliable.  
Therefore  the  first  tool,  aside  from measuring speech  rate,  
was also used to segment silence and speech as an input for 
the ProsodyPro tool. The same script  settings were used for 
all  audio  recordings  providing  consistency  for  the  cost  of 
some  erroneous  segmentation  which  were  identified  and 
corrected  by  a  human  expert  prior  to  analysis  with 
ProsodyPro.

At the end,  the measured  values for of the “statement” 
turns  were  subtracted  from  those  of  the  corresponding 
“correction”  turn,  producing  a  data-set  representing 
quantitative changes in prosodic features. Delta values (Δ) for 
the “correction” features  are better  suited for analysis  since  
they are already paired with the preceding “statement”, in the  
same  time  compensating  speaker  and  environment  specific 
influences.

4. Results

4.1. Exploratory statistics

The  total  distribution  of  the  introduced  errors  on  all  
languages  is:  deletions  35.85%,  insertions  8.20%  and 
substitutions 55.95%.  Table 1 presents  the introduced error 
distribution across languages.  For some languages there  are 
differences in the count of insertions errors, because often the  
speakers were quite confused providing no answer that could 
be paired with the previous statement. 

Table 1: Error category distribution.

% CN DE EN ES FR IT NL RU TR
DEL 38.57 29.00 36.69 39.15 36.27 41.06 28.29 43.24 34.71

INS 2.69 20.38 3.35 3.44 9.15 2.85 9.87 5.74 5.50

SUB 58.74 50.63 59.96 57.41 54.58 56.10 61.84 51.01 59.79



Gender  distribution of the participants  on all  languages 
was: female 56.74% vs male 43.36% (Table 2). 

Table 2: Gender distribution.

% CN DE EN ES FR IT NL RU TR
F 70.85 58.31 42.21 51.59 48.47 53.66 53.95 77.03 66.32

M 29.15 41.69 57.79 48.41 51.53 46.34 46.05 22.97 33.68

The participants  were  instructed  to  use  the  appropriate 
correction keyword to solve the miscommunication. However 
in 61.86% of the cases,  the speakers did not use it.  Table 3 
presents the frequency of using the correction keyword across 
languages.  To  confirm  that  the  observed  differences  are 
significant  across languages,  for each speaker  the frequency 
of  the  usage  was  calculated  and  Kruskal-Wallis  test 
confirmed the observations (p<0.001).

Table 3: Correction keyword usage.

% CN DE EN ES FR IT NL RU TR
NO 54.71 61.91 57.99 44.44 53.56 44.72 86.84 77.70 90.38

YES 45.29 38.09 42.01 55.56 46.44 55.28 13.16 22.30 9.62

The  transcribed  correction  responses  were  further 
analyzed and categorized according to the utterance content:

• Different, non-matching content (DIFF);

• Full, identical content (FULL);

• Mixed, statement contained in correction (MIX);

• Partial, correction contained in statement (PART).

Assuming  non-normal  distribution,  Kruskal-Wallis  test 
for  each  response  category showed  that  they are  language 
dependent (p<0.001), presented in Figure 1. 

Figure 1: Distribution of the correction utterances  
into categories across languages.

In a  case  of totally different  and  mixed  responses,  the 
keyword was part of the answer in 65.22% and 49.16% of the 
cases  respectively.  The  rest  of  the  responses  contained 
arbitrary  content  difficult  to  foresee  and  handle  from  the 
aspect  of  speech  technology  by  using  a  restricted  set  of 
dialogue acts and responses. 

4.2. Normality Test

Firstly, the presence of characteristic hyperarticulated speech 
for  correction  turns  has  to  be  confirmed,  in  [9-10]  it  is 
defined,  with  reference  to  prosody,  as  “slower  and  louder 
speech with wider pitch excursion and more internal silence”. 

Shapiro  Wilk  normality  test  on  the  delta  features, 
regardless  of  the  language,  showed  that  they  are  not 
represented  with  normal  distribution,  as  is  usually true  for 
large sample  count real  data.  Non-parametric  Wilcoxon test 
applied on all the delta features, regardless of the language,  
showed that  the minimum  f0  is  significantly higher  for the 
correction  turns  (p<0.001),  there  are  less  pitch  excursions 
(p<0.001), higher maximal velocity (p<0.001), longer speech 
duration  with  unchanged  phonation  time  (p<0.001),  lower 
speech rate (p<0.001), lower articulation rate (p<0.001) and 
longer  average  syllable  duration  (p<0.001).  This  confirmed 
the  presence  of  distinctive  prosodic  features  particularly 
related  with  slower  speech,  indicating  hyperarticulation.  
Kruskal-Wallis  rank  sum  test  on  the  delta  features  with 
language  as  a  factor  showed  (p<0.01)  that  except  for 
minimum  f0 (floor of the speaker’s physiological  f0 range), 
all other features belong to non-identical populations.

4.3. Linear Mixed Models

More  elaborate  analysis  was  performed  to  show  whether  
some prosodic and speech rate features are more significant  
in  different  languages.  Since  the  prosody  features  were 
measured  on  speech  recorded  in  a  complex  experimental  
setup with speakers in many languages,  better  insight about 
the effects of the factors could be given by employing Linear 
Mixed Models [24]. 

The  respective  measures  were  taken  as  dependent 
variables,  speaker  and the scenarios  as  random factors,  the 
native  language,  gender  and  the  introduced  error  type 
(insertions, deletions, substitutions) as fixed factors, as well  
as all their possible interactions were included in the model. 

For each delta feature, we constructed an initial model as 
described  and  then  performed  automatic  backward 
elimination  of non-significant  effects.  The  p-values  for  the 
fixed  effects  are  calculated  from  F  test  based  on 
Satterthwaite’s  approximation.  The  gender  alone  had  a 
significant effect on the delta values of mean  f0 (F[1,377] = 
4.5251, p<0.05), female speakers lowered their  f0 more than 
males in the correction turn.  Gender had a significant effect 
on  the  maximal  f0 velocity  (F[1,204]  =  7.5214,  p<0.01), 
where female speakers had higher maximal pitch velocity.

The gender  in interaction with  language had significant 
effect  for  maximal  f0 (F[8,199]  =  2.3244,  p<0.05).  The 
interaction  of the  factor  gender  with  factor  error  type  was 
significant for: mean f0 (F[2,2953] = 7.1530, p<0.001), mean 
intensity  (F[2,2959]  =  7.7792,  p<0.001),  articulation  rate 
(F[2,2957] = 5.0150,  p<0.01)  and average syllable  duration 
(F[2,2957] = 3.4432, p<0.05). 

Table 4: Analysis of variance table.

Feature (Δ) DenDf F p
Speaker language (NumDf=8)

mean intensity 534.62 2.9547 0.01

max f0 velocity 636.03 3.4290 0.001

speech rate 614.97 3.8572 0.001

articulation rate 594.41 3.7968 0.001

avg. syll. duration 569.10 2.9333 0.01

Introduced error (NumDf=2)
max f0 2954.54 4.1352 0.05

mean f0 2935.74 15.1808 0.001

mean intensity 2943.11 6.7247 0.01

speech rate 281.32 8.8997 0.001



Figure 2. Mean values with 95% CI of the features  
with language as significant factor.

Table 4 presents the analysis of variance table of type III 
with Satterthwaite  approximation with the language and the 
type  as  factors.  Only  the  dependent  variables  where  the 
language  or  the  error  type  were  significant  factors  are 
presented. The statistical analysis further revealed significant 
interactions between language and the type of the introduced 
error (p<0.001) for all measured dependent variables.

5. Discussion

Firstly, there are differences how speakers reacted in the case 
of introduced errors. The suggestion to the speakers to use the 
keyword to recover  from miscommunication was  differently 
accepted,  ranging from 55.3% cases in Italian down to only 
9.6% for Turkish.  More  specific,  in  61.9% of cases  of not 
using  the  correction  keyword,  significant  differences  were 
observed among the Dutch, Russian and Turkish speakers.

Regarding the response types, in case of full repetitions, 
Turkish  speakers  used  to  repeat  the  statement  sentence  in 
correction turn more often. German and Spanish speakers had 
above average frequency of responses with different content,  
while Turkish was significantly below the average. In partial  
responses,  Italian  and  Spanish  tend  to  have  lower  than 
average frequency than other languages. For mixed correction 
responses, German and Spanish had notably lower frequency. 

The Linear Mixed Model analysis showed that there is a 
significant influence of the fixed factors language and type of 
the introduced error, as well as their interaction on the delta 
features  related  to  hyperarticulated  speech.  The  observed 
means with the 95% CI are presented in Figure 2 and 3. 

Least-squares  means  analysis  of the model  showed that 
language  was  a  significant  factor  for mean intensity where 
Spanish speakers had lower intensity in corrections than the 
others.  Maximum pitch velocity was significantly higher for 
Italian  (p<0.001),  followed  by English  (p<0.001),  Spanish 
(p<0.01) and French (p<0.01) speakers. 

The speech rate  was significantly different,  the Spanish 
(p<0.001) were talking slower in corrections than all others,  
followed  by  Italian  (p<0.05),  French  (p<0.01),  English 
(p<0.05) and German (p<0.05). 

Similar behavior was observed also for articulation rate,  
which was  lower  for: Spanish  (p<0.001),  English  (p<0.05),  
German  (p<0.01),  and  higher  for  the  Dutch  (p<0.05)  and 
Mandarin  Chinese  (p<0.05).  Average  syllable  duration  was 
(in order): shorter for Dutch (p<0.05) and longer for German 
(p<0.05), Spanish (p<0.05) and English (p<0.01). 

Figure 3. Mean values with 95% CI of the features  
with introduced error type as significant factor.

Regarding  the  introduced  error  type  (Figure  3),  the 
maximal  f0 was  lower  in  the  case  of  insertions  (p<0.05),  
mean  f0 was  lower  in  insertions  (p<0.001)  and  higher  in 
deletions (p<0.01). Similarly for mean intensity, it was lower 
for  insertions  (p<0.05)  and  higher  for  deletions  (p<0.01),  
while the speech rate was significantly slower in the case of 
substitutions error (p<0.001). 

In  general  the  speakers  raised  their  voice  (pitch  and 
intensity) in the case of reacting on the request to repeat the 
last utterance (deletions) but they did the opposite in the case  
of insertions, mostly confused by the sudden and unexpected  
system confirmation.  The speech rate  (including the pauses 
and hesitations)  was  slower  in  misrecognition clarifications 
(substitutions).  While  for the language and error type there  
are  clear  findings  in  significant  differences,  in  the  case  of 
their interactions things are far more complex what makes the 
problem of defining  optimal  recovery strategies  even  more 
difficult. All those observations should be taken with care in 
the  development  process  of a  multilingual  spoken  dialogue 
system.

6. Conclusions and Future Work

From  the  results  it  could  be  clearly  seen  that  there  are 
distinctive prosodic features across languages associated with 
hyperarticulated speech in correction dialogue acts. This is a 
potential issue in developing or adapting existing SDS to new 
languages. 

Many  solutions  are  possible  for  language  dependent 
adaptation of a SDS (some presented in Section 1) to address  
the hyperarticulated  speech.  Training classifiers  of prosodic 
features to detect hyperarticulated speech, employing special  
dialogue  configurations  for  the  recognition  (confidence 
thresholds, grammars [5]) or different strategies to cope with  
uncertainty in  corrections,  acoustic  model  adaptation  (as  in 
[14]) or modifying feature extraction settings (frame rate and 
size, voice activity detection, etc). 

Our  future  work  will  be  focused  to  more  elaborate 
analysis  of significant  interactions  of the  gender,  language 
and error type factors expressed by prosodic features that are  
already certain  indicators  of hyperarticulated  speech and to 
suggest methods to detect and handle such occasions. 
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